On the existence of non-free totally reflexive modules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence totally reflexive covers

Let $R$ be a commutative Noetherian ring. We prove that  over a local ring $R$ every finitely generated $R$-module $M$ of finite Gorenstein projective dimension has a Gorenstein projective cover$varphi:C rightarrow M$ such that $C$ is finitely generated and the projective dimension of $Kervarphi$ is finite and $varphi$ is surjective.

متن کامل

Totally reflexive extensions and modules

Article history: Received 23 August 2012 Available online xxxx Communicated by Luchezar L. Avramov MSC: 16G50 13B02 16E65

متن کامل

On the Number of Indecomposable Totally Reflexive Modules

In this note, it is proved that over a commutative noetherian henselian non-Gorenstein local ring there are infinitely many isomorphism classes of indecomposable totally reflexive modules, if there is a nonfree cyclic totally reflexive module.

متن کامل

Brauer–thrall for Totally Reflexive Modules

Let R be a commutative noetherian local ring that is not Gorenstein. It is known that the category of totally reflexive modules over R is representation infinite, provided that it contains a non-free module. The main goal of this paper is to understand how complex the category of totally reflexive modules can be in this situation. Local rings (R, m) with m3 = 0 are commonly regarded as the stru...

متن کامل

Totally Reflexive Modules Constructed from Smooth Projective Curves of Genus

In this paper, from an arbitrary smooth projective curve of genus at least two, we construct a non-Gorenstein Cohen-Macaulay normal domain and a nonfree totally reflexive module over it.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2019

ISSN: 1939-2346

DOI: 10.1216/jca-2019-11-4-453